crystallization papers

Acta Crystallographica Section D Biological Crystallography ISSN 0907-4449

Xin-Quan Wang, Lu-Lu Gui, Yong Dai, Chih-Chen Wang, Wen-Rui Chang and Dong-Cai Liang*

National Laboratory of Biomacromolecules, Institute of Biophysics, Academia Sinica, Beijing 100101, People's Republic of China

Correspondence e-mail: dcliang@sun5.ibp.ac.cn

Purification, crystallization and preliminary crystallographic studies on the N-terminal fragment of human protein disulfide isomerase

A fragment of human protein disulfide isomerase composed of the thioredoxin-like *a* and *b* domains (*ab*) has been expressed in *Escherichia coli* as a fusion protein with glutathione-S-transferase and purified after thrombin cleavage. Two forms of *ab* crystal were obtained with polyethylene glycol as precipitant and different additives at pH 7.5. The space group of form I is $P4_12_12$ or $P4_32_12$, with unit-cell dimensions a = 81.5, c = 259.7 Å. The space group of form II is $P4_122$ or $P4_322$, with unit-cell dimensions a = 82.7, c = 86.5 Å.

Received 6 May 1999 Accepted 14 September 1999

1. Introduction

Protein disulfide isomerase (PDI, E.C. 5.3.4.1), a multifunctional protein in the lumen of endoplasmic reticulum and one of the two foldases, catalyzes the formation and rearrangement of disulfide bonds (Freedman *et al.*, 1994). Experimental evidence also shows that PDI has chaperone activity (Cai *et al.*, 1994; Puig & Gilbert, 1994; Yao *et al.*, 1997). In addition, PDI is a component of prolyl-4hydroxylase (Pihlajaniemi *et al.*, 1987) and the microsomal triglyceride transfer protein (Wetterau *et al.*, 1990) and is essential for their structural stability and biological function (John *et al.*, 1993; Wetterau *et al.*, 1991).

According to the cDNA-deduced primary structure (Edman et al., 1985) and results from protein-engineering studies (Darby & Creighton, 1995; Darby et al., 1996), PDI has been deduced to be composed of four domains in the order -a-b-b'-a' and a stretch of acidic residues, labelled c, at the C-terminus (Edman et al., 1985). Domains a and a' are homologous to each other (47% identity) and also to thioredoxin (Edman et al., 1985). Both the a and a' domains contain the active-site motif -Cys-Gly-His-Cys-, which participates in thiol-disulfide exchange during the catalysis process (Hawkins & Freedman, 1991; Lundstrom & Holmgren, 1993). There is 28% sequence identity between the b and b' domains (Edman et al., 1985), which do not have the active-site motif -Cys-Gly-His-Cys-. The functions of b and b' are not clearly known. The *a* and *a'* domains have been individually expressed in Escherichia coli as stable and soluble proteins which have 14 and 9% of the activity of the intact PDI molecule in catalyzing the oxidative formation of disulfide bonds (Darby & Creighton, 1995). Neither domain has substantial activity in catalyzing disulfide-bond isomerization. Addition of b and b' domains to the isolated a domain gradually increases the

catalytic efficiency of PDI, especially in the catalysis of disulfide-bond rearrangements in folded substrates (Darby *et al.*, 1998). It has been reported that different domains of PDI contribute to the substrate-binding site and that the acidic C-terminal extension is not critical for the enzyme-subunit function (Klappa *et al.*, 1998; Koivunen *et al.*, 1999). These results show that other structural elements, such as *b* and *b'* domains, are necessary for the full spectrum of PDI activities.

Although structures of individual a and b domains of human PDI in solution have been determined by NMR techniques (Kemmink *et al.*, 1996, 1997), the crystal structures of human PDI and its multi-domain constructs have not yet been reported. In this paper, we report the purification and crystallization of the N-terminal fragment of human PDI consisting of a and b domains.

2. Experimental procedure

2.1. Construction of the expression plasmid

The plasmid pBR322-PDI, which contains the full length of the human PDI cDNA, was a generous gift from Professor K. Kivirikko, University of Oulu, Finland. The primer I (5'-CGGGGATCCGACGCCCCCGAGGAG-3') was designed to hybridize with the first 15 nucleotides at the 5'-terminus of the human PDI cDNA sequence and contains a BamHI site (in bold) just before the sequence. The primer II (5'-CGGAATTCACTCTTGGG-CAAG-3') with a EcoRI site (in bold) hybridizes with the sequence between base pairs 729 and 741 of the human PDI cDNA. The doublestranded DNA fragment coding for the sequence Asp1-Ser247 of human PDI was generated by the polymerase chain reaction with the above two primers and the pBR322-PDI plasmid as a template. The PCR

product was then ligated into expression vector pGEX4T1 (Pharmacia) digested with BamHI and EcoRI in-frame with the glutathione S-transferase (GST) fusion codons to construct the expression plasmid pGEX4T1-ab. The foreign DNA sequences cloned into the expression plasmid were verified by nucleotide sequencing.

2.2. Expression, purification and activity assav

Protein production was carried out in E. coli strain BL21 containing the pGEX4T1-ab plasmid. Cells grown overnight at 310 K in LB medium containing $50 \ \mu g \ ml^{-1}$ ampicillin were diluted 50-fold and grown at 301 K to an absorbance of 0.6 at 600 nm. Gene expression was induced by addition of IPTG to a final concentration of 0.1 mM followed by additional growth for 4 h.

The cell pellet from 11 culture was suspended in 50 ml PBS (140 mM NaCl, 2.7 mM KCl, 10.1 mM Na₂HPO₄, 1.8 mM KH₂PO₄, pH 7.3) and lysed by sonication at 277 K. Triton X-100 was added to a final concentration of 1%(v/v) with gentle stirring for 30 min at room temperature and cellular

Figure 1 Photograph of a form I crystal of maximum dimensions $0.3 \times 0.05 \times 0.05$ mm.

Figure 2 Photograph of a form II crystal of dimensions $0.6 \times$ $0.1 \times 0.1 \text{ mm}$

debris was removed by centrifugation. The supernatant was loaded onto a glutathione Sepharose 4B column (Pharmacia, 10 ml) equilibrated with PBS containing 1%(v/v)Triton X-100. After extensive washing with 100 ml PBS, the bound fusion protein on the matrix was eluted with 10 mM reduced glutathione in 50 mM Tris-HCl (pH 8.0). Following the removal of glutathione by extensive dialysis against 50 mM Tris-HCl (pH 8.5) and cleavage of the fusion protein at 277 K for 48 h with thrombin, the eluate was applied to the glutathione Sepharose 4B column again and the flow-through containing ab but devoid of GST was applied to an FPLC Superdex 75HR gel-filtration column (Pharmacia) and eluted with 50 mM phosphate buffer (pH 7.0) containing 0.15 M NaCl. Fractions of ab identified with 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) were pooled, thoroughly dialyzed against 50 mM NH₄HCO₃, lyophilized and stored at 253 K.

The disulfide isomerase and thiol-protein oxidoreductase (TPOR) activities were assayed using the methods of Lambert & Freedman (1983).

2.3. Crystallization

Crystallization experiments were performed using the hanging-drop vapourdiffusion method. Crystallization conditions were screened by sparse-matrix sampling (Jancarik & Kim, 1991). Thin needle-shaped crystals were obtained with polyethylene glycol as precipitant. With the optimized crystallization conditions, form I crystals were obtained by mixing 3 µl protein solution (15 mg ml⁻¹, 25 mM HEPES pH 7.5) with 3 µl reservoir solution containing 20-23%(w/v) PEG 5000 MME, 200 mM NH₄Ac, 100 mM HEPES buffer (pH 7.5) and 5%(v/v) glycerol. The crystals grew to dimensions $0.3 \times 0.05 \times 0.05$ mm after two weeks at 293 K (Fig. 1). When 5%(v/v)glycerol was replaced by 5%(v/v) 1,6hexanediol, form II crystals with dimensions $0.6 \times 0.1 \times 0.1$ mm were obtained by mixing 4 µl protein solution (15 mg ml⁻¹, 25 mM HEPES, pH 7.5) with 2 µl reservoir solution (Fig. 2).

2.4. X-ray data collection

Diffraction data were collected from a form I crystal with a Weissenberg camera (Sakabe, 1991) installed on beamline 16A $(\lambda = 1.00 \text{ Å})$ at the Photon Factory (Tsukuba, Japan). The data set includes 36 IP frames with a 2.5° oscillation angle per frame. Diffraction data from a form II crystal were recorded over 280 1° oscillation images at room temperature using a MAR Research image-plate system. Data were processed with the HKL suite (Otwinowski & Minor, 1997).

3. Results

The purified *ab* fragment is composed of 261 residues, including residues 1-247 of the PDI molecule (491 residues) with an additional Gly and Ser at the N-terminus and Glu, Phe, Pro, Gly, Arg, Leu, Glu, Arg, Pro, His, Arg and Asp at the C-terminus. The extra two residues at the N-terminus are produced by thrombin cleavage in the GST-ab, while the extra 12 residues at the C-terminus are the result of using the stop codon in the expression vector. Fragment ab has $17.3 \pm 0.5\%$ (*n* = 4) of the isomerase activity and 12.9 \pm 1.6% (n = 4) of the TPOR activity of the intact PDI molecule.

Form I crystals belong to the tetragonal system with unit-cell dimensions a = 81.5, c = 259.7 Å. Based on the systematic absences observed, the space group was determined to be $P4_12_12$ or $P4_32_12$. Given the molecular weight of 28 kDa, the unit cell has a V_m of 3.8 Å³ Da⁻¹ (Matthews, 1968) for two ab molecules per asymmetric unit, a V_m of 2.6 Å³ Da⁻¹ for three *ab* molecules per asymmetric unit or a V_m of 1.9 Å³ Da⁻¹ for four *ab* molecules per asymmetric unit. The final data set $[I > 2\sigma(I)]$ has a merging R factor for symmetry-related reflections of 0.09 at 3.5 Å resolution. The completeness of the data (7695 unique reflections) is 73% for the resolution range 30-3.5 Å and 30% in the 3.63-3.50 Å shell.

Form II crystals also belong to the tetragonal system, but the unit-cell dimensions are a = 82.7, c = 86.5 Å. Systematic absences $l \neq 4n$ were observed along the 00*l* direction and there were no systematic absences h = 2n + 1 along the h00 direction. Inspection of the Laue symmetry of the reciprocal space showed that the space group was $P4_122$ or $P4_322$. There is one *ab* molecule in the asymmetric unit, with a V_m of $2.6 \text{ Å}^3 \text{ Da}^{-1}$, corresponding to a solvent content of 53%. The final data set, consisting of 3840 unique reflections with $I > 2\sigma(I)$, is 67% complete in the 30-3.0 Å resolution range and 30% in the resolution shell 3.11–3.00 Å. The merging R factor of symmetry-related reflections of this data set is 0.12.

Compared with the form I crystals, form II crystals are more suitable for structure determination, having one molecule in the asymmetric unit. Attempts to solve the structure by the molecular-replacement method with the solution structure of domain a as a search model have been unsuccessful. The structure determination of the ab fragment by MIR method is in progress.

References

- Cai, H., Wang, C. C. & Tsou, C. L. (1994). J. Biol. Chem. 269, 24550–24552.
- Darby, N. J. & Creighton, T. E. (1995). Biochemistry, 34, 11725–11735.
- Darby, N. J., Kemmink, J. & Creighton, T. E. (1996). Biochemistry, 35, 10517–10528.
- Darby, N. J., Penka, E. & Vincentelli, R. (1998). J. Mol. Biol. 276, 239–247.
- Edman, W. J., Ellis, L., Blacher, R. W., Roth, R. A. & Rutter, W. J. (1985). *Nature (London)*, **317**, 267–270.

- Freedman, R. B., Hirst, T. R. & Tuite, M. F. (1994). *Trends Biochem. Sci.* **19**, 331–336.
- Hawkins, H. C. & Freedman, R. B. (1991). Biochem. J. 275, 335–339.
- Jancarik, J. & Kim, S.-H. (1991). J. Appl. Cryst. 24, 409–411.
- John, D. C. A., Grant, M. E. & Bulleid, N. J. (1993). *EMBO J.* **12**, 1587–1595.
- Kemmink, J., Darby, N. J., Dijstra, K., Nilges, M. & Creighton, T. E. (1996). *Biochemistry*, 35, 7684–7691.
- Kemmink, J., Darby, N. J., Dijstra, K., Nilges, M. & Creighton, T. E. (1997). Curr. Biol. 7, 239–245.
- Klappa, P., Ruddock, L. W., Darby, N. J. & Freedman, R. B. (1998). *EMBO J.* **17**, 927–935.
- Koivunen, P., Pirneskoski, A., Karvonen, P., Ljung, J., Hilaakoski, T., Notbohm, H. & Kivirikko, K. I. (1999). *EMBO J.* 18, 65–74.
- Lambert, N. & Freedman, R. B. (1983). *Biochem.* J. **213**, 225–234.

- Lundstrom, J. & Holmgren, A. (1993). *Biochemistry*, **32**, 6649–6655.
- Matthews, B. W. (1968). J. Mol. Biol. 33, 491–497. Otwinowski, Z. & Minor, W. (1997). Methods
- Enzymol. 273, 307–326. Pihlajaniemi, T., Helaakoshi, T., Tasanen, K.,
- Mgllyla, R., Huhtala, M. L., Koivu, J. & Kivirriko, K. I. (1987). *EMBO J.* **6**, 643–649.
- Puig, A. & Gilbert, H. (1994). J. Biol. Chem. 269, 7764–7771.
 Sakabe, N. (1991). Nucl. Instrum. Methods Phys.
- *Res. A*, **303**, 448–463.
- Wetterau, J. R., Combs, K. A., McLean, L. R., Spinner, S. N. & Aggerbeck, L. W. (1991). *Biochemistry*, **30**, 9728–9735.
- Wetterau, J. R., Combs, K. A., Spinner, S. N. & Joiner, B. J. (1990). J. Biol. Chem. 265, 9800–9807.
- Yao, Y., Zhou, Y. C. & Wang, C. C. (1997). EMBO J. 16, 651–658.